Planning for Demand Resources in New England

Michael I. Henderson Director Regional Planning and Coordination ISO New England

Disclaimer

- Properly Presented Information
 - Accurately represents the positions of ISO New England
- Inaccurate Information or Opinions that May Not Fully Agree with ISO New England
 - My private views and are not meant to represent any organization with which I am affiliated

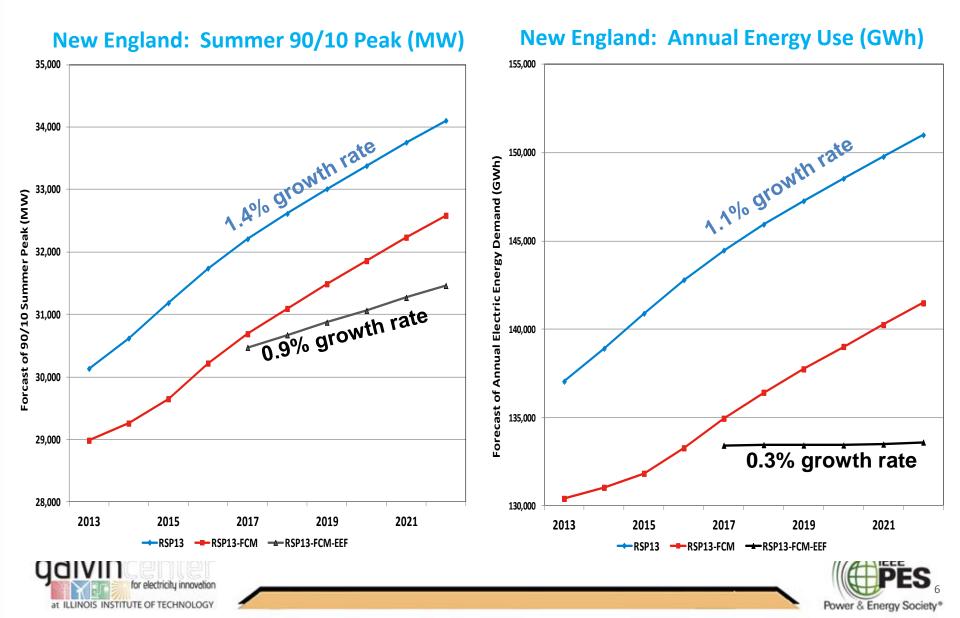
Key Facts About New England's Electric Power System and Wholesale Electricity Markets

at ILLINOIS INSTITUTE OF TECHNOLOGY

- 6.5 million households and businesses; population 14 million
- Over 350 generators
- 31,700 MW of total generation
- Over 8,000 miles of transmission lines
- 13 interconnections to electricity systems in New York and Canada
- Approximately 1,850 MW of demand resources for 2013
- All-time peak demand of 28,130 MW, set on August 2, 2006
- Approximately 500 participants in the marketplace (those who generate, buy, sell, transport, and use wholesale electricity and implement demand resources)
- \$6.10 billion total market value—
 \$4.77 billion energy market,
 \$1.19 billion capacity market,
 and approximately \$0.13 billion for ancillary services
- Approximately \$5.5 billion in transmission investment since 2002; approximately \$5.7 billion planned over the next 5 years

Eligible Resources in the Forward Capacity Market

- Supply Resources
 - Traditional Generation (Oil, Coal, Natural Gas, etc.)
 - Intermittent Generation (Wind, Solar, etc.)
 - Renewable Generation
- Demand Resources
 - Energy Efficiency
 - Load Management
 - Distributed Generation


Energy-Efficiency Forecast Model Key Parameters for EE Forecast Model

- MW = Budget \$ * %Spent * MWh/\$ * RR * MW/MWh
- Budget \$: an estimate of the dollars to be spent on EE (Including Budget Uncertainty)
- %Spent: percentage of dollars that can be spent on EE programs in that time period – developed from historical data
- MWh/\$: MWh savings per dollar spent developed from historical data (includes cost increases and decreases)
- RR: Realization Rate comparison of observed/measured savings to estimated savings – developed from historical data
- MW/MWh: peak to energy ratio (inverse of load factor) developed from historical data (developed from load forecast for Proof of Concept)

2013 New England Demand and EE Forecast Results

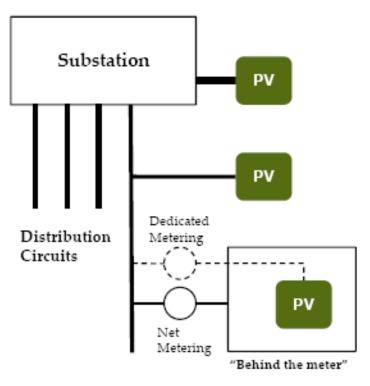
Effect of DR Participation in FCM: Four Key Observations

- 1. As the MWs of Active DR grow, their dispatch frequency increases
- 2. Active DR will be needed during shoulder months
- 3. As a general rule, there are few hours when 100% of the Active DR is needed
- 4. Under the 90/10 Load Forecast, more Active DR will be called upon for more hours

Large Amounts of Active DR

- Challenges
 - Increased frequency and amounts of active demand resource operation
 - Potential fatigue factor is a concern
 - Use during the non-traditional shoulder load periods
 - Coordination of DR usage with traditional supply resource maintenance and unanticipated forced outages
 - Control of DR
 - Monitoring performance of DR
- Solutions
 - Provide information so that bidders can better anticipate required performance
 - Incorporate DR dispatch in Security Constrained Dispatch

Connecting Distributed Generation to the Distribution System (Photovoltaic Example*)


- Distributed PV can be connected to:
 - 1. Substation
 - PV must be in proximity to substation, and is connected to low side bus
 - 2. Primary distribution system:
 - Connected to the distribution system without integration with a customer's electrical system
 - 3. Behind the Meter

LINOIS INSTITUTE OF TECHNOLOG

PV is integrated with a customer's

interconnection as a net metered facility or one

that utilizes dedicated metering

Power & Energy Society*

*Source: Navigant Energy, Integrating PV on Distribution, Carnegie Mellon Conference on the Electricity Industry March 9, 2011, available at: <u>http://www.ece.cmu.edu/~electricityconference/2011/pdfs/Navigant%20-</u> Contegrating%20PV%20on%20Distribution%20-%20CMU%20Electricity%20Industry%20-%2003-09-2011.pdf

Summary

- A multi-state energy long-term energy efficiency forecast has been developed
- Price responsive demand must offer daily just like a generator
- Integrate Demand Response Resources into security constrained dispatch
- Large quantities of active Demand Resources could create potential operating issues for providers and ISO
- Forecasting distributed generation resources is challenging, but is under development

